MATH102 mid-term quiz 2

Friday 27th April, 2012
Name: \qquad ID: \qquad
Circle your recitation section: 5 (8am) 6 (9am)
7 (11am) 8 (12am)

Question:	1	2	3	4	Bonus	Total
Points:	5	15	12	18	5	50
Score:						

Time: 50 minutes.
You must show your working for all questions.

1. (5 points) Evaluate the indefinite integral $\int \sec ^{4} x \mathrm{~d} x$, giving your answer in terms of x.

Solution:

$$
\int \sec ^{4} x \mathrm{~d} x=\int\left(1+\tan ^{2} x\right) \sec ^{2} x \mathrm{~d} x
$$

so we can substitute $u=\tan x$ and $\mathrm{d} u=\sec ^{2} x \mathrm{~d} x$ to get

$$
\cdots=\int\left(1+u^{2}\right) \mathrm{d} u=u+\frac{1}{3} u^{3}+C=\tan x+\frac{1}{3} \tan ^{3} x+C .
$$

2. (a) (8 points) Evaluate the definite integral $\int_{0}^{2} \frac{x^{2}}{\sqrt{9-x^{2}}} \mathrm{~d} x$.

Solution: Substitute $x=3 \sin \theta$, so $\mathrm{d} x=3 \cos \theta \mathrm{~d} \theta$ and $\theta=\sin ^{-1}(x / 3)$. Remember to change the limits as well: $x=0$ gives $\theta=0$, and $x=2$ gives $\theta=\sin ^{-1}(2 / 3)$. We get

$$
\begin{aligned}
\int_{0}^{\sin ^{-1}(2 / 3)} & \frac{(3 \sin \theta)^{2}}{\sqrt{9-(3 \sin \theta)^{2}}}(3 \cos \theta) \mathrm{d} \theta \\
& =\int_{0}^{\sin ^{-1}(2 / 3)} \frac{(3 \sin \theta)^{2}}{|3 \cos \theta|}(3 \cos \theta) \mathrm{d} \theta \\
& \left.=\int_{0}^{\sin ^{-1}(2 / 3)}(3 \sin \theta)^{2} \mathrm{~d} \theta \quad \quad \text { (because } \cos \theta \geq 0\right) \\
& =9 \int_{0}^{\sin ^{-1}(2 / 3)} \frac{1-\cos (2 \theta)}{2} \mathrm{~d} \theta \\
& =\frac{9}{2}\left[\theta-\frac{1}{2} \sin (2 \theta)\right]_{0}^{\sin ^{-1}(2 / 3)} \\
& \approx 1.047 .
\end{aligned}
$$

Question 2 continues...

Question 2 (continued)

(b) (5 points) Use the trapezoid rule, with 10 intervals of width 0.2 , to work out an approximation to the definite integral of part (a). The following table gives values of the function $f(x)=x^{2} / \sqrt{9-x^{2}}$ at the values you will need.

x	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
$f(x)$	0.00	0.01	0.05	0.12	0.22	0.35	0.52	0.74	1.01	1.35	1.79

Solution: Using the trapezoid rule:

$$
\begin{aligned}
A_{T}= & \frac{0.2}{2}(0.00+2 \times 0.01+2 \times 0.05+2 \times 0.12+2 \times 0.22+2 \times 0.35 \\
& \quad+2 \times 0.52+2 \times 0.74+2 \times 1.01+2 \times 1.35+1.79) \\
= & 1.053
\end{aligned}
$$

(c) (2 points) Give two ways in which you could modify your calculation in part (b) to give a better approximation to the actual value of the integral.

Solution: Either use more smaller intervals, or use an improved method such as Simpson's Rule.
3. (a) (7 points) Use the method of partial fractions to express the rational function $\frac{3 x^{2}-6 x+4}{\left(x^{2}+4\right)(x-3)}$ as a sum of simpler fractions.

Solution: Write

$$
\frac{3 x^{2}-6 x+4}{\left(x^{2}+4\right)(x-3)}=\frac{A x+B}{x^{2}+4}+\frac{C}{x-3}
$$

and solve for A, B and C :

$$
\begin{aligned}
\frac{3 x^{2}-6 x+4}{\left(x^{2}+4\right)(x-3)} & =\frac{(A x+B)(x-3)+C\left(x^{2}+4\right)}{\left(x^{2}+4\right)(x+3)} \\
& =\frac{(A+C) x^{2}+(-3 A+B) x+(-3 B+4 C)}{\left(x^{2}+4\right)(x-3)}
\end{aligned}
$$

and so $A+C=3,-3 A+B=-6$ and $-3 B+4 C=4$. The first two give $C=3-A$ and $B=3 A-6$, respectively; substituting these for B and C in the third equation gives

$$
-3(3 A-6)+4(3-A)=30-13 A=4
$$

and so $A=2$. Substituting back gives $B=0$ and $C=1$. So

$$
\frac{3 x^{2}-6 x+4}{\left(x^{2}+4\right)(x-3)}=\frac{2 x}{x^{2}+4}+\frac{1}{x-3}
$$

Question 3 (continued)

(b) (5 points) Does the improper integral $\int_{4}^{\infty} \frac{3 x^{2}-6 x+4}{\left(x^{2}+4\right)(x-3)} \mathrm{d} x$ converge? Justify your answer.

Solution: The integral diverges, and there are several ways to show it.
One way is to directly compute the limit:

$$
\begin{aligned}
\int_{4}^{\infty} \frac{3 x^{2}-6 x+4}{\left(x^{2}+4\right)(x-3)} \mathrm{d} x & =\lim _{a \rightarrow \infty} \int_{4}^{a} \frac{3 x^{2}-6 x+4}{\left(x^{2}+4\right)(x-3)} \mathrm{d} x \\
& =\lim _{a \rightarrow \infty} \int_{4}^{a}\left(\frac{2 x}{x^{2}+4}+\frac{1}{x-3}\right) \mathrm{d} x \\
& =\lim _{a \rightarrow \infty}\left[\ln \left(x^{2}+4\right)+\ln (x-3)\right]_{4}^{a} \\
& =\infty
\end{aligned}
$$

Another way is to use the direct comparison test: looking at the partial fraction expression, the integrand is definitely larger than $1 / x$, because the first term is positive and the second term is greater than $1 / x$. Since we know that $\int_{4}^{\infty} d x / x$ diverges, so this integral diverges as well.
4. This question is about the parametric curve defined by

$$
x=e^{-t} \cos t, \quad y=e^{-t} \sin t, \quad 0 \leq t<\infty .
$$

(a) (4 points) At what points does the curve cut the x-axis? (Give the coordinates of each point, as well as the value of t).

Solution: Setting $y=0$ gives us $e^{-t} \sin t=0$, and since e^{-t} cannot be zero, we deduce that $\sin t=0$ and so $t=0, \pi, 2 \pi, 3 \pi, \ldots$. So the points where the curve meets the x-axis are

$$
(1,0),\left(-e^{-\pi}, 0\right),\left(e^{-2 \pi}, 0\right),\left(-e^{-3 \pi}, 0\right), \ldots
$$

(b) (4 points) Show that the slope of the curve at time t is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sin t-\cos t}{\sin t+\cos t}
$$

Solution: The derivatives of x and y are

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=-e^{-t} \cos t-e^{-t} \sin t=-e^{-t}(\sin t+\cos t) \\
& \frac{\mathrm{d} y}{\mathrm{~d} t}=-e^{-t} \sin t+e^{-t} \cos t=-e^{-t}(\sin t-\cos t)
\end{aligned}
$$

So we compute

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-e^{-t}(\sin t-\cos t)}{-e^{-t}(\sin t+\cos t)}=\frac{\sin t+\cos t}{\sin t-\cos t} .
$$

(c) (2 points) Find the slope of the curve each time it cuts the x-axis. What is unusual about your answer?

Solution: At the points of interest $(t=0, \pi, 2 \pi, 3 \pi, \ldots)$ we have $\sin t=0$ and so $\mathrm{d} y / \mathrm{d} x=-1$. The unusual fact is that the slope is the same every time the curve cuts the x-axis.

Question 4 continues...

Question 4 (continued)

(d) (8 points) Calculate the length of the curve between $t=0$ and $t=2 \pi$.

Solution: The length is given by

$$
\begin{aligned}
s & =\int_{0}^{2 \pi} \sqrt{\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t \\
& =\int_{0}^{2 \pi} \sqrt{\left(-e^{-t}(\sin t+\cos t)\right)^{2}+\left(-e^{-t}(\sin t-\cos t)\right)^{2}} \mathrm{~d} t \\
& =\int_{0}^{2 \pi} \sqrt{e^{-2 t}\left(\left(\sin ^{2} t+2 \sin t \cos t+\cos ^{2} t\right)+\left(\sin ^{2} t-2 \sin t \cos t+\cos ^{2} t\right)\right)} \mathrm{d} t \\
& =\int_{0}^{2 \pi} \sqrt{2 e^{-2 t}\left(\sin ^{2} t+\cos ^{2} t\right)} \mathrm{d} t \\
& =\int_{0}^{2 \pi} \sqrt{2 e^{-2 t}} \mathrm{~d} t \\
& =\int_{0}^{2 \pi} \sqrt{2} e^{-t} \mathrm{~d} t \\
& =\sqrt{2}\left[-e^{-t}\right]_{0}^{2 \pi} \\
& =\sqrt{2}\left(1-e^{-2 \pi}\right) \approx 1.412
\end{aligned}
$$

Bonus question (5 points)

What can you say about the length of the whole curve in question 4 ?

Solution: By the same calculation as in question 4, we have

$$
\int_{0}^{\infty} \sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t=\lim _{a \rightarrow \infty} \sqrt{2}\left(1-e^{-a}\right)=\sqrt{2}
$$

and so the length of the whole curve is finite, and equals $\sqrt{2}$.

